APPLICATION NOTE InFORCE™MF (908-38-1) ## Ag Sinter Paste for Die-Attach #### Introduction **InfORCE™MF** pressure Ag sinter paste has been specifically formulated for dry placement sinter process. The target application for this material is for die attach-to-substrate in power electronics. **InFORCE™MF** can be used on silver, gold, and bare copper surfaces (multi-finish) and offers a number of benefits that help to maximize throughput in high-volume manufacturing, including: - · Fast printing speeds - Fastest drying times possible - Hot die tack or tacking agent compatible - Sinter pressure 10–20MPa #### **Storage and Handling** InFORCE™MF should be stored at sub-zero °C temperatures. Below -10°C is recommended to ensure the shelf life. Following low-temperature storage, sufficient resting time is required before use. Allow a minimum of 8 hours or overnight "thawing" before use. Some mixing is necessary before use to re-homogenize the paste. Figure 2. Smooth print deposit at >100mm/s. Figure 3. Dog-eared edges due to excessive separation speed. #### **Process Flow** Recommended process flow for die-to-substrate application: Figure 1. Process Flow Diagram. #### **Mixing** After thawing it is normal to observe some separation of the silver content and the binder. Re-homogenization should be done by using a planetary centrifugal mixer or similar. Exact mixing parameters will depend on the equipment used. An example process for a Thinky mixer is 2 minutes at a maximum of 700 rpm. #### **Pre-Dry** Pre-dry must be optimized for sufficient solvent evaporation. InFORCE™MF is formulated for fast drying times. Paste deposit thickness should be considered when establishing drying times. For thickness <100um, dry for 5–10 minutes; for thicker deposits >100um, dry for 10–15 minutes. It is necessary to reach temperatures of $140-150^{\circ}\text{C}$ when pre-drying InFORCE™MF due to the fast-dry solvents in the formulation. Drying profiles should be verified with a temperature recorder or thermocouple. Dry under N₂ to prevent oxidation when bare copper surfaces are to be sintered. Longer drying times may be necessary when drying under N₂. Drying time starts when temperatures above 140°C are reached. #### **Stencil Printing** InFORCE™MF performs best with print speeds between 50 and 100mm/s. The paste should be observed to be "rolling" during the print stroke for optimal aperture fill. Slow separation speed is recommended to ensure good print definition and to prevent "dog ears" at the edges. Parameters may need to be adjusted based on number of deposits, aperture shape, and dimensions. ### 160 140 120 20 0 100 200 300 400 500 600 700 800 Time (seconds) Figure 4. Drying profile: 10 minutes @ 150°C. #### **Recommended Starting Parameters:** - Print speed: Between 50-100mm/s - Print pressure: 4kg (increase if excessive paste remains on the stencil) - Separation speed: less than 1mm/s (reduce if edge definition is poor or "dog ears" are observed) ## APPLICATION NOTE InFORCE™MF (908-38-1) #### Ag Sinter Paste for Die-Attach #### **Hot Die Tack** InFORCE™MF performs very well in a hot die tack process when heat and pressure are applied during die placement. Process time will depend on the capability of the die bond equipment to reach the set bond pressure. Lower temperatures have less oxidation risk when bare copper surfaces are used. Temperatures and bond pressure may need to be increased for Au surfaces. Recommended starting parameters for Ag surfaces: • Substrate temperature: 100°C • Bonder head (nozzle) temperature: 120°C • Bond pressure for Ag-coated die: 1MPa (+/- 0.5) • Bond pressure for Au-coated die: 1-3MPa Bond time: 150ms – 1s (must be adequate to reach the set pressure) #### **Pressure Sinter** InFORCE™MF should be sintered for 3 minutes (180 seconds) at temperatures between 250–270°C with pressures of 10–20MPa, depending on surface finish. The following conditions yield very high shear strengths >50MPa for 5 x 5mm die: - All Ag surfaces: 3 minutes, 250°C @ 10–20MPa under air or N₂ - Bare copper surface: 3 minutes, 270°C @ 15–20MPa under N_2 Figure 5. Sinter profile: 3 minutes, 260°C @ 20MPa. #### **BLT Post-Sintering** Due to the $InFORCE^{m}MF$ high metal loading, the reduction in bondline thickness from wet paste to post-sinter is approximately 50%. #### **Typical Post-Sinter Properties** | InFORCE™MF Properties | | |--------------------------------|-----| | Melting Point (°C) | 961 | | Electrical Resistivity (μΩ.cm) | 5 | | Thermal Conductivity (W/mK) | 280 | | CTE (ppm/K) | 19 | #### **Summary** InFORCE™MF is targeted for power module, die-attach application. Due to the fast process times, an increase in throughput can be achieved compared to other Ag sinter pastes. For the best results, the recommended process parameters should be used as a starting point and adjusted where necessary. Parameter settings outside of the specified ranges may be necessary in some cases. Indium Corporation's experienced applications and technical support team are on hand to offer any guidance that is needed. Figure 6. CSAM 9x8mm die, Ag back metal on Ag-plated substrate. This product data sheet is provided for general information only. It is not intended, and shall not be construed, to warrant or guarantee the performance of the products described which are sold subject exclusively to written warranties and limitations thereon included in product packaging and invoices. All Indium Corporation's products and solutions are designed to be commercially available unless specifically stated otherwise. All of Indium Corporation's solder paste and preform manufacturing facilities are IATF 16949:2016 certified Indium Corporation is an ISO 9001:2015 registered company. Contact our engineers: askus@indium.com Learn more: www.indium.com