Introduction

Durafuse™ LT is a novel solder paste mixed-alloy system for low-temperature reflow processes which require high drop shock reliability. Durafuse™ LT is made up of a low-melting In-containing alloy and higher-melting SAC alloy. The SnInAg alloy initiates joint fusion while the SAC alloy provides enhanced strength and durability. Durafuse™ LT is ideal for high-reliability applications, which utilize thermally sensitive components.

Features

- Excellent drop shock reliability—comparable to SAC
- Reflow below 210°C
- Melting temperature above 180°C
- Good mechanical shear strength up to 150–165°C
- Good thermal and electrical conductivity

Flux Vehicle

Indium10.8HF is a halogen-free, no-clean solder paste. This paste has excellent wetting properties on all fresh and aged surface finishes including, but not limited to, OSP, ImAg, ImSn, and ENIG. Indium10.8HF features exceptional HIP and NWO performance. This paste has a wide reflow profile window under both air and nitrogen, enabling a fully optimized reflow process. Indium10.8HF is not designed for standard low-temperature reflow profiles, but may be used for select processes with Durafuse™ LT. Please contact Technical Support for assistance.

Storage and Handling Procedures

Refrigerated storage will prolong the shelf life of solder paste. Solder paste packaged in syringes and cartridges should be stored tip down.

Standard Product Specifications

<table>
<thead>
<tr>
<th>Flux</th>
<th>Mesh Size</th>
<th>Printing Metal Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indium10.8HF</td>
<td>Type 4</td>
<td>88–90%</td>
</tr>
<tr>
<td></td>
<td>Type 5-MC</td>
<td>88–89%</td>
</tr>
</tbody>
</table>

Indium Corporation manufactures mixed low-oxide spherical powders in the industry standard Type 4 and Type 5-MC mesh sizes. Other non-standard mesh sizes are available upon request. The weight ratio of the flux/vehicle to the solder powder is referred to as the metal load and is typically in the range of 83–92% for standard compositions.

Indium10.8HF Industry Standard Test Results and Classification

Based on the testing required by IPC J-STD-004B (IPC-TM-650)

<table>
<thead>
<tr>
<th>Solder Paste Viscosity for Type 4/4.5 Solders</th>
<th>Typical Solder Paste Viscosity for Type 4/4.5 Solders</th>
</tr>
</thead>
<tbody>
<tr>
<td><900ppm Cl</td>
<td><900ppm Br</td>
</tr>
<tr>
<td><900ppm Br</td>
<td><1,500ppm Total</td>
</tr>
<tr>
<td>Conforms with all requirements</td>
<td></td>
</tr>
</tbody>
</table>

*Patented

Key Applications

Low-temperature solders reduce warpage of thermally sensitive components by reducing peak reflow temperature; however, standard Bi-based low-temperature alloys are unable to withstand even moderate drop shock. Durafuse™ LT is a low-temperature Pb-free solder capable of reducing peak reflow temperature by 40°C relative to SAC305, with drop shock reliability two orders of magnitude greater than standard low-temperature alloys.

Durafuse™ LT samples in the chart (left) experienced a peak reflow temperature of 210°C and demonstrated drop shock resilience similar to that of SAC305.
PRODUCT DATA SHEET

Durafuse™ LT
Low-Temperature Drop Shock Solution

Printing

Stencil Design:

Electroformed and laser cut/electropolished stencils produce the best printing characteristics among stencil types. Stencil aperture design is a crucial step in optimizing the print process. The following are a few general recommendations:

- Discrete components—A 10–20% reduction of stencil aperture has significantly reduced or eliminated the occurrence of mid-chip solder beads. The “home plate” design is a common method for achieving this reduction.
- Fine-pitch components—A surface area reduction is recommended for apertures of 20mil pitch and finer. This reduction will help minimize solder balling and bridging that can lead to electrical shorts. The amount of reduction necessary is process-dependent (5–15% is common).
- A minimum aspect ratio of 1:5 is suggested for adequate release of solder paste from stencil apertures. The aspect ratio is defined as the width of the aperture divided by the thickness of the stencil.

Printer Operation:

The following are general recommendations for stencil printer optimization. Adjustments may be necessary based on specific process requirements:

<table>
<thead>
<tr>
<th>Solder Paste Bead Size</th>
<th>20–25mm in diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print Speed</td>
<td>25–150mm/second</td>
</tr>
<tr>
<td>Squeegee Pressure</td>
<td>0.018–0.027kg/mm of blade length</td>
</tr>
<tr>
<td>Underside Stencil Wipe</td>
<td>Start at once per every 5 prints and decrease frequency until optimum value is reached</td>
</tr>
<tr>
<td>Solder Paste Stencil Life</td>
<td>Up to 12 hours at 30–60% RH and 22–28°C</td>
</tr>
</tbody>
</table>

Cleaning

Indium10.8HF is designed for no-clean applications; however, the flux can be removed, if necessary, by using a commercially available flux residue remover.

Stencil Cleaning is best performed using an automated stencil cleaning system for both stencil and misprint cleaning to prevent extraneous solder balls. Most commercially available stencil cleaning formulations including isopropyl alcohol (IPA) work well.

Reflow

Recommended Profile:

This profile is designed for use with Durafuse™ LT (Indium10.8HF). This can be used as a general guideline in establishing a reflow profile for Durafuse™ LT Solder Paste. Deviations from these recommendations are acceptable, and may be necessary, based on specific process requirements.

Packaging

Standard packaging for Durafuse™ LT is 500g jars and 600g cartridges. Other packaging options may be available upon request.

Complementary Products

- Rework Flux: TACFlux® 571HF, TACFlux® 020B-RC
- Liquid Rework Flux: FP-500

Note: Other products may be applicable. Please consult one of Indium Corporation’s Technical Support Engineers.