PRODUCT DATA SHEET

NC-SMQ92J-UV

Solder Paste

Introduction

NC-SMQ92J-UV is a halide-free, air reflow, no-clean solder paste formulated to leave a UV-fluorescing, probe-testable residue. The post-reflow flux residue contains a UV tracer that allows instant identification of any extraneous flux residues when inspected under a UV light. This is especially useful in applications where gold fingers or contacts, such as memory modules, are used. This product has other qualities such as consistent fine-pitch paste deposition, unsurpassed stencil life and tack time, and excellent wetting. NC-SMQ92J-UV will perform well on high-speed surface mount lines utilizing fast print speeds and rapid chip placement. NC-SMQ92J-UV meets or surpasses all ANSI/J-STD-004 and -005 specifications, and Bellcore test criteria.

Features

- Excellent wetting reflow in air
- Probe-testable UV-fluorescing, post-reflow residue
- Extended open time
- Consistent fine-pitch printing
- Strong initial tack strength and long-term stability
- High humidity resistance
- Halide-free

Alloys

Indium Corporation manufactures low-oxide spherical powder composed of SnPb and SnPbAg in the industry standard Type 3 mesh size. Other non-standard mesh sizes are available upon request. The weight ratio of the flux vehicle to the solder powder is referred to as the metal load and is typically in the range of 85–92% for standard alloy compositions.

Standard Product Specifications

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Metal Load</th>
<th>Mesh Size</th>
<th>Particle Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn63 and Sn62</td>
<td>90%</td>
<td>Type 3</td>
<td>25–45μm</td>
</tr>
<tr>
<td></td>
<td>85%</td>
<td>-325/+500</td>
<td>0.001–0.0018"</td>
</tr>
</tbody>
</table>

Bellcore and J-STD Tests and Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux-Induced Corrosion (Copper Mirror)</td>
<td>Pass</td>
<td>(Sn63, 90%, Type 3) Malcom (10rpm)</td>
<td>0.75</td>
</tr>
<tr>
<td>Presence of Halide – Fluoride Spot Test – Elemental Analysis (Br, Cl, F)</td>
<td>Pass 0%</td>
<td>Typical Thixotropic Index; SSF (ICA Test)</td>
<td>Pass</td>
</tr>
<tr>
<td>Post-Reflow Flux Residue (ICA Test)</td>
<td>45%</td>
<td>Slump Test</td>
<td>Pass</td>
</tr>
<tr>
<td>Corrosion</td>
<td>Pass</td>
<td>Solder Ball Test</td>
<td>Pass</td>
</tr>
<tr>
<td>SIR</td>
<td>Pass</td>
<td>Typical Tackiness</td>
<td>38g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetting Test</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BELLCORE GR-78</td>
<td>Pass</td>
</tr>
<tr>
<td>SIR</td>
<td>Pass</td>
<td>Electromigration</td>
<td>Pass</td>
</tr>
</tbody>
</table>

All information is for reference only. Not to be used as incoming product specifications.

Packaging

Standard packaging for stencil printing applications includes 4oz jars and 6 or 12oz cartridges. Packaging for enclosed print head systems is also readily available. For dispensing applications, 10 and 30cc syringes are standard. Other packaging options are available on request.

Storage and Handling Procedures

Refrigerated storage will prolong the shelf life of solder paste. The shelf life of NC-SMQ92J-UV is 6 months when stored at <10°C. Solder paste packaged in syringes and cartridges should be stored tip down. Solder paste should be allowed to reach ambient working temperature prior to use. Generally, paste should be removed from refrigeration at least 2 hours before use. Actual time to reach thermal equilibrium will vary with container size. Paste temperature should be verified before use. Jars and cartridges should be labeled with date and time of opening.

Technical Support

Indium Corporation’s internationally experienced engineers provide in-depth technical assistance to our customers. Thoroughly knowledgeable in all facets of Materials Science as it applies to the electronics and semiconductor sectors, Technical Support Engineers provide expert advice in solder properties, alloy compatibility and selection of solder preforms, wire, ribbon, and paste. Indium Corporation’s Technical Support Engineers provide rapid response to all technical inquiries.

Safety Data Sheets

The SDS for this product can be found online at http://www.indium.com/sds
PRODUCT DATA SHEET
NC-SMQ92J-UV Solder Paste

Printing

Stencil Design:
Electroformed and laser cut/electropolished stencils produce the best printing characteristics among stencil types. Stencil aperture design is a crucial step in optimizing the print process. The following are a few general recommendations:

- Discrete components—A 10–20% reduction in stencil aperture area may significantly reduce or eliminate the occurrence of mid-chip solder beads. The “home plate” design is a common method for achieving this reduction.

- Fine-pitch components—A surface area reduction is recommended for apertures of 20mil pitch and finer. This reduction will help minimize solder balling and bridging that can lead to electrical shorts. The amount of reduction necessary is process-dependent (5–15% is common).

- A minimum aspect ratio of 1:5 is suggested for adequate release of solder paste from stencil apertures. The aspect ratio is defined as the width of the aperture divided by the thickness of the stencil.

Printer Operation
The following are general recommendations for stencil printer optimization. Adjustments may be necessary based on specific process requirements:

<table>
<thead>
<tr>
<th>Solder Paste Bead Size</th>
<th>20–25mm in diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print Speed</td>
<td>25–100mm/second</td>
</tr>
<tr>
<td>Squeegee Pressure</td>
<td>0.018–0.027kg/mm of blade length</td>
</tr>
<tr>
<td>Underside Stencil Wipe</td>
<td>Once every 10–25 prints</td>
</tr>
<tr>
<td>Solder Paste Stencil Life</td>
<td>>12 hours (at 30–60% RH and 22–28°C)</td>
</tr>
</tbody>
</table>

Cleaning
NC-SMQ92J-UV is designed for no-clean applications; however, the flux can be removed, if necessary, by using a commercially available flux residue remover.

Stencil Cleaning: This is best performed using an automated stencil cleaning system for both stencil and misprint cleaning to prevent extraneous solder balls. Most commercially available stencil cleaning formulations, including isopropyl alcohol (IPA), work well.

Compatible Products
- Rework Flux: TACFlux® 020
- Cored Wire: Core 92

Reflow

Recommended Profile:
This profile is designed for use with Sn63/Pb37 and Sn62/Pb36/Ag2 and can serve as a general guideline in establishing a reflow profile for use with other alloys. Adjustments to this profile may be necessary based on specific process requirements.

Heating Stage:
A linear ramp rate of 0.5–2.0°C/second allows gradual evaporation of volatile flux constituents and prevents defects such as solderballing/beading and bridging as a result of hot slump. It also prevents unnecessary depletion of fluxing capacity when using higher temperature alloys. A profile with an extended soak above 150°C can be implemented to reduce void formation and minimize tombstoning when required.

Liquidus Stage:
A peak temperature of 25–45°C (215°C shown) above the melting point of the solder alloy is needed to form a quality solder joint and achieve acceptable wetting due to the formation of an intermetallic layer. If the peak temperature is excessive, or the time above liquidus greater than the recommended 30–90 seconds, flux charring, excessive intermetallic formation, and damage to the board and components can occur.

Cooling Stage:
A rapid cool down of <4°C/second is desired to form a fine-grain structure. Slow cooling will form a large-grain structure, which typically exhibits poor fatigue resistance. If excessive cooling (>4°C/second) is used, both the components and the solder joint can be stressed due to a high CTE mismatch.