Indium9.0A
Pb-Free Solder Paste

Introduction
Indium9.0A is an air reflow, no-clean solder paste specifically formulated to accommodate the higher processing temperatures required by the SnAgCu, SnAg, and other alloy systems favored by the electronics industry to replace conventional Pb-bearing solders. Indium9.0A offers unprecedented stencil print transfer efficiency to work in the broadest range of processes. In addition, the high oxidation resistance of Indium9.0A virtually eliminates incomplete coalescence (graping) of small deposits.

Alloys
Indium Corporation manufactures low-oxide spherical powder composed of a variety of Pb-free alloys that cover a broad range of melting temperatures. Type 3 and Type 4 powders are standard offerings with SAC305 and SAC387 alloys. The metal percent is the weight percent of the solder powder in the solder paste and is dependent upon the powder type and application. Standard product offerings are detailed in the following table.

Standard Product Specifications

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Metal Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.5Sn/3.8Ag/0.7Cu (SAC387)</td>
<td>89.0%</td>
</tr>
<tr>
<td>96.5Sn/3.0Ag/0.5Cu (SAC305)</td>
<td>88.5%</td>
</tr>
<tr>
<td>98.5Sn/1.0Ag/0.5Cu (SAC305)</td>
<td></td>
</tr>
<tr>
<td>99Sn/0.3Ag/0.7Cu (SAC0307)</td>
<td></td>
</tr>
</tbody>
</table>

Features
- High transfer efficiency through small apertures (<0.66AR)
- Eliminates graping phenomenon on small deposits
- Low voiding in BGA/CSP solder joints

Storage and Handling Procedures
Refrigerated storage will prolong the shelf life of solder paste. Solder paste packaged in cartridges should be stored tip down.

<table>
<thead>
<tr>
<th>Storage Conditions (unopened containers)</th>
<th>Shelf Life</th>
</tr>
</thead>
<tbody>
<tr>
<td><10°C</td>
<td>6 months</td>
</tr>
</tbody>
</table>

Solder paste should be allowed to reach ambient working temperature prior to use. Generally, paste should be removed from refrigeration at least two hours before use. Actual time to reach thermal equilibrium will vary with container size. Paste temperature should be verified before use. Jars and cartridges should be labeled with date and time of opening.

Packaging
Indium9.0A is currently available in 500g jars or 600g cartridges. Packaging for enclosed print head systems is also readily available. Alternate packaging options may be available upon request.

Compatible Products
- Rework Flux: TACFlux® 020B, TACFlux® 089HF
- Cored Wire: CW-802, CW-807
- Wave Flux: WF-7745, WF-9945

Note: Other products may be applicable. Please consult one of Indium Corporation’s Technical Support Engineers.

Test Result
J-STD-004 (IPC-TM-650)
- Flux Type (per J-STD-004A)
- Flux Induced Corrosion (Copper Mirror)
- Presence of Halide
- Silver Chromate
- Fluoride Spot Test
- Ion Chromatography
- SIR
 - ROL1
 - Type L
- Presence of Halide
 - Pass
 - Pass <0.5% Cl- eq.
BELLCORE AND J-STD TESTS & RESULTS

All information is for reference only. Not to be used as incoming product specifications.
Indium9.0A Pb-Free Solder Paste

Printing

Stencil Design:
Electroformed and laser cut/electropolished stencils produce the best printing characteristics among stencil types. Stencil aperture design is a crucial step in optimizing the print process. The following are a few general recommendations:

- **Discrete components** — A 10–20% reduction of stencil aperture has significantly reduced or eliminated the occurrence of mid-chip solder beads. The “home plate” design is a common method for achieving this reduction.
- **Fine pitch components** — A surface area reduction is recommended for apertures of 20 mil pitch and finer. This reduction will help minimize solder balling and bridging that can lead to electrical shorts. The amount of reduction necessary is process dependent (5–15% is common).
- **For optimum transfer efficiency and release of the solder paste from the stencil apertures, industry standard aperture and aspect ratios should be adhered to.**

Reflow

Recommended Profile:

The stated profile recommendations apply to most Pb-free alloys in the SnAgCu (SAC) alloy system, including SAC305 (96.5Sn/3.0Ag/0.5Cu). This can be used as a general guideline in establishing a reflow profile when using **Indium9.0A** solder paste. Deviations from these recommendations are acceptable, and may be necessary, based on specific process requirements, including board size, thickness, and density. Start with the linear profile, then move to the optional soak profile if needed. The flat soak portion of the linear profile (linear shoulder) may also be eliminated.

Table: Reflow Profile Details

<table>
<thead>
<tr>
<th>SAC305 Parameters</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp Profile (Average Ambient to Peak) - Not the Same as Maximum Rising Slope</td>
<td>0.5–1°C/Second</td>
</tr>
<tr>
<td>Soak Zone Profile (Optional)</td>
<td>30–90 Seconds</td>
</tr>
<tr>
<td></td>
<td>160–180°C</td>
</tr>
<tr>
<td>Time Above Liquidus (TAL)</td>
<td>45–60 Seconds</td>
</tr>
<tr>
<td>Peak Temperature</td>
<td>230–260°C</td>
</tr>
<tr>
<td>Cooling Ramp Rate</td>
<td>2–6°C/Second</td>
</tr>
<tr>
<td>Reflow Atmosphere</td>
<td>Air or N₂</td>
</tr>
</tbody>
</table>

Cleaning

Indium9.0A is designed for no-clean applications. However, the flux can be removed if necessary by using a commercially available flux residue remover.

Stencil Cleaning is best performed using isopropyl alcohol (IPA) as a solvent. Most commercially available non-water-based stencil cleaners work well.