RMA-F Solder Paste

Benefits
• Exceptional printing
• Wide humidity tolerance
• Long stencil life
• Wide reflow profile window
• Outstanding slump resistance
• Excellent wetting compatibility

Packaging
Standard packaging for stencil printing applications includes 500g jars and 700g cartridges. For dispensing applications, 10cc and 30cc syringes are standard. Other packaging options may be available upon request.

Storage and Handling Procedures
Refrigerated storage will prolong the shelf life of solder paste. The shelf life of RMA-F is 6 months when stored at -20° to +5°C. Storage temperatures should not exceed 25°C. When storing solder paste contained in syringes and cartridges, the packages should be stored with tip down.

Solder paste should be allowed to reach ambient working temperature prior to use. Generally, paste should be removed from refrigeration at least two hours before use. Actual time to reach thermal equilibrium will vary with container size. Paste temperature should be verified before use. Jars and cartridges should be labeled with date and time of opening.

Material Safety Data Sheets
The MSDS for this product can be found online at http://www.indium.com/techlibrary/msds.php

Printing

Printer Operation:
The following are general recommendations for stencil printer optimization for RMA-F. Adjustments may be necessary based on specific process requirements:

• Solder Paste Bead Size: 0.75-1 inch diameter 20-25mm diameter
• Print Speed: 1-3 inches/sec 25-125mm/sec
• Squeegee Pressure: 0.5-1.5 lbs./inch of blade 0.2-0.7kg/inch of blade
• Underside Stencil Wipe: Once every 10-25 prints or as necessary
• Solder Paste Stencil Life: >6 hrs. @ 20 to at least 70% R.H. & 22-28°C

Wetting
RMA-F exhibits excellent wetting on a wide variety of surface finishes, such as immersion tin, immersion silver, nickel/gold, palladium, HASL, and OSP, under both air and nitrogen reflow atmosphere. The solder joints are shiny and smooth, even for ultra fine-pitch.

Bellcore and J-STD Tests & Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-STD-004 (IPC-TM-650)</td>
<td>ROL1</td>
<td>J-STD-005 (IPC-TM-650)</td>
<td>32g</td>
</tr>
<tr>
<td>Flux Type Classification</td>
<td>Pass</td>
<td>Typical Tackiness</td>
<td></td>
</tr>
<tr>
<td>Copper Mirror</td>
<td>Pass</td>
<td>Solder Ball Test</td>
<td>Pass</td>
</tr>
<tr>
<td>Silver Chromate</td>
<td>Pass</td>
<td>Wetting Test</td>
<td>Pass</td>
</tr>
<tr>
<td>SIR</td>
<td>Pass</td>
<td>Slump Test</td>
<td>Pass</td>
</tr>
<tr>
<td>Bellcore Electromigration</td>
<td>Pass</td>
<td>Post Reflow Residue</td>
<td>40%</td>
</tr>
</tbody>
</table>

All information is for reference only. Not to be used as incoming product specifications.
RMA-F Solder Paste

Heating Stage:
A linear ramp rate of approximately 1°C/second allows gradual evaporation of volatile flux constituents and prevents defects such as solder balling/beading and bridging as a result of hot slump. It also prevents unnecessary depletion of fluxing capacity when using higher temperature alloys.

Liquidus Stage:
A peak temperature of 25°-45°C above the melting point of the solder alloy is needed to form a quality solder joint and achieve acceptable wetting due to the formation of an intermetallic layer. If the peak temperature is excessive, or the time above liquidus greater than the recommended 45-90 seconds, flux charring, excessive intermetallic formation and damage to the board and components can occur.

Cooling Stage:
A rapid cool down of < 4°C/second is desired to form a fine grain structure. Slow cooling will form a large grain structure, which typically exhibit poor fatigue resistance. If excessive cooling of > 4°C/second is used, both the components and the solder joint can be stressed due to a high CTE mismatch.

In the event of significant uneven thermal mass distribution, a profile with up to 3 minutes soaking at 10-20°C below the melting point may be used to reduce the temperature gradient and to minimize any possible tombstoning. Adjustments in time and temperature to these profiles may be necessary based on specific process requirements and the use of alloys with different melting temperatures.

This product data sheet is provided for general information only. It is not intended, and shall not be construed, to warrant or guarantee the performance of the products described which are sold subject exclusively to written warranties and limitations and shall not be construed, to warrant or guarantee the performance of the products therein included in product packaging and invoices.